

Schwall und Sunk Überblick der Ursachen und Auswirkungen

Diego Tonolla

Fachtagung Sanierung der Auswirkungen von Schwall und Sunk – Interlaken – 27. Oktober 2016

Inhalt

- 1. Wasserkraftprodution & Ursachen von Schwall-Sunk
- 2. Auswirkungen vom Schwall-Sunk Betrieb

Wasserkraft ist Entscheidend zur Versorgungssicherheit

Weltweit trägt die Wasserkraft zu 16.4 % der gesamten Energieproduktion (IEA, 2016). China produziert 26.7% davon.

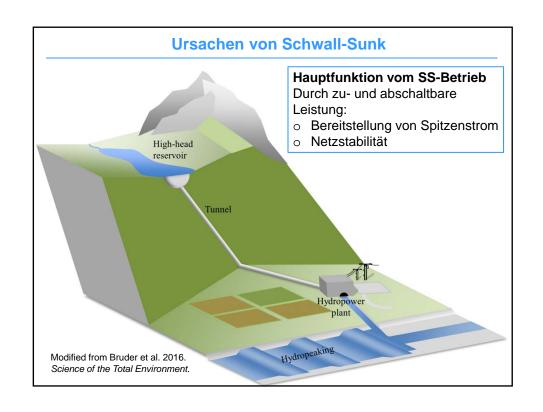
Land	Wasserkraft- produktion (TWh)	% total Elektrizitäts- produktion	% Speicher- kraftwerke
China	1064 (IEA 2016)	18.7 (IEA 2016)	
Norwegen	137 (IEA 2016)	96.0 (IEA 2016)	
Frankreich	69 (IEA 2016)	12.2 (IEA 2016)	
Italien	47 (Terna 2016)	16.6 (Terna 2016)	
Österreich	40 (E-Control 2016)	62.3 (E-Control 2016)	34.0 (E-Control 2016)
Schweiz	39 (BFE 2016)	59.9 (BFE 2016)	57.9 (BFE 2016)

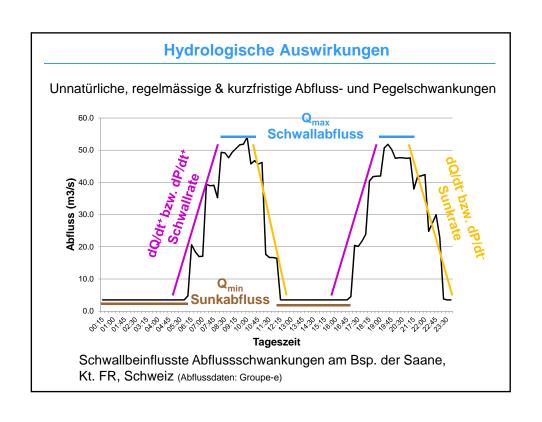
IEA 2016. Key world energy statistics (2014 data). International Energy Agency, Paris. E-Control 2016. Statistikbroschüre 2016 (2015 data). Energie-Control Austria, Wien. BFE 2016. Schweizerische Elektrizitätsstatistik 2015 (2015 data). Bundesamt für Energie, Bern. Terna 2016. Dati statistici sull'energia elettrica in Italia (2015 data). Terna Spa, Roma.

Speicherkraftwerke

In den meisten Fällen gelten folgende Vor- und Nachteile:

Vorteile

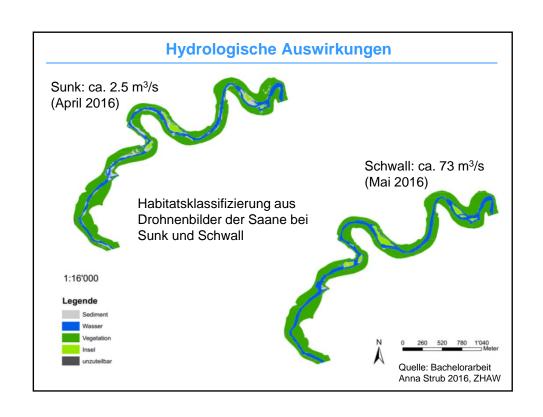

- o Erneuerbare Stromquelle, nahezu CO₂-neutral
- o Sehr hohe Effizienz (ausgezeichneter Wirkungsgrad)
- o Saisonspeicher für Umlagerun von Sommer auf Winter
 - -> Batterie für neue erneuerbare Energien (Sonne, Wind)
- o Beitrag zum Hochwasserschutz
- o Bereitstellung von Spitzenstrom
- Netzstabilität

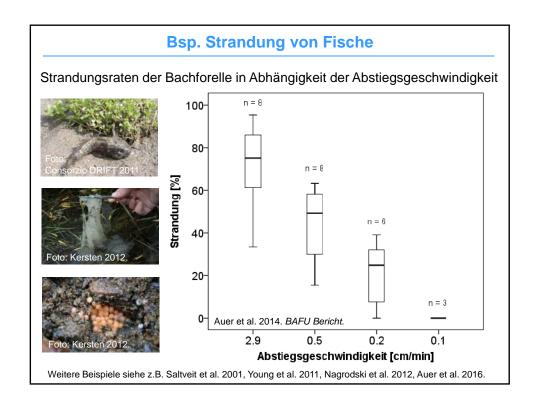

Nachteile

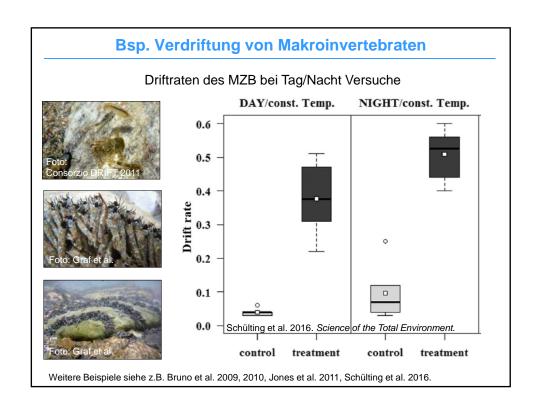
- o Vernetzung
- o Hochwasserdynamik
- o Restwasser
- o Geschiebehaushalt & -dynamik
- Schwall-Sunk

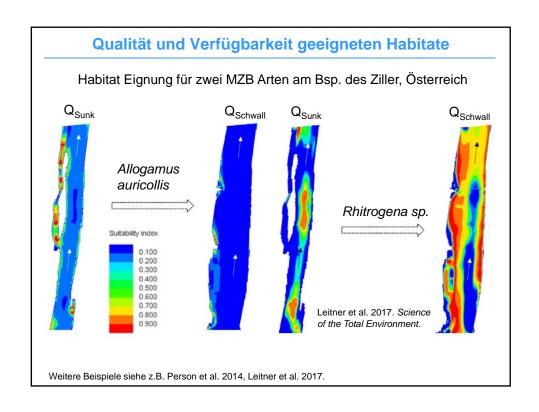
Emosson, Staumauer und Speicher

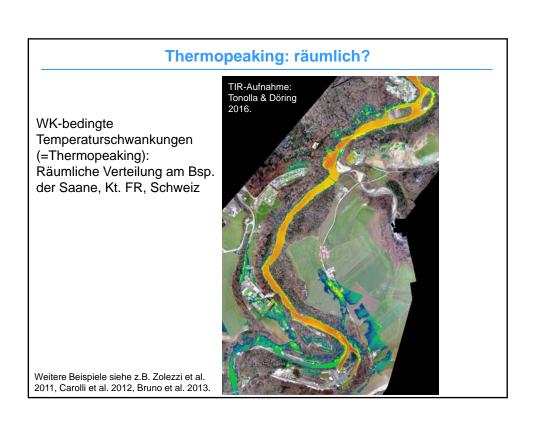
Foto: Elektrizität Emosson AG

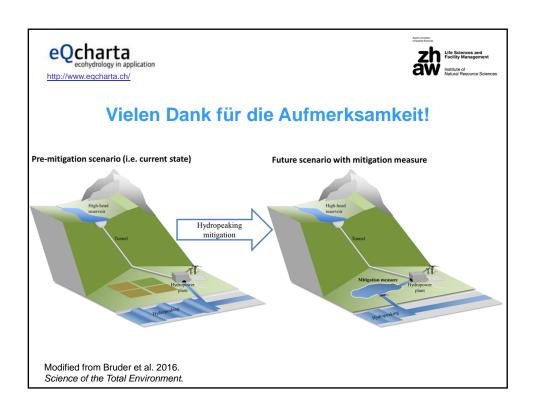







Ökologische Auswirkungen


Übersicht möglicher negativen Auswirkungen von Schwall-Sunk auf die Gewässerökologie einer Schwallstrecke


Hydrologischer Effekt	Haupt- Hydromorphologische Effekte	Haupt negative Auswirkungen auf Ökologie
Hoher Schwallabfluss	Hohe Fliessgeschwindigkeit und Wassertiefe	Reduziertes/fehlendes Habitatsangebot
Tiefer Sunkabfluss	Geringe Wassertiefe und Fliessgeschwindigkeit	Reduziertes/fehlendes Habitatsangebot, trockenfallen von Laichgruben und Eiern
Rascher Pegel- und Abflussanstieg	Rasche Zunahme der Fliessgeschwindigkeit und Sohlenschubspannung	Verdriftung von Organismen
Rasche Pegel- und Abflussabnahme	Rasche Abnahme der benetzten Fläche	Stranden von Organismen

